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I have measured the early stages of the growth of branched metal aggregates formed by electrochemical
deposition in very thin layers. The growth rate of spatial Fourier modes is described qualitatively by the results
of a linear stability analysis@D.P. Barkey, R.H. Muller, and C.W. Tobias, J. Electrochem. Soc.136, 2207
~1989!#. The maximum growth rate is proportional to (I /c)d whereI is the current through the electrochemical
cell, c the electrolyte concentration, andd51.3760.08. Differences between my results and the theoretical
predictions suggest that electroconvection in the electrolyte has an influence on the instability leading to
ramified growth.@S1063-651X~96!50506-4#

PACS number~s!: 47.20.Hw, 81.15.Pq, 68.70.1w

Rough surfaces develop in many systems in which the
surface grows under far-from-equilibrium conditions@1,2#,
due to the fact that the smooth surface is unstable to the
growth of perturbations over a range of wave numbers. This
morphological instability was first treated by Mullins and
Sekerka~MS! in the context of solidifying alloys@3#. Metal
aggregates grown by electrochemical deposition~ECD! in
quasi-two-dimensional geometries display a variety of quali-
tatively different branched growth morphologies@4,5#, and
there has been considerable study of the basic instability of
the straight electrode which leads to the initial development
of branched growth@6–14#.

To understand this instability qualitatively, assume that
the cations are transported by migration in an applied electric
field to the cathode, where they are deposited. The electric
field will be uniform along the length of a straight cathode,
but will be enhanced near the tip of a small bump. This will
lead to an increased current of cations, and so a higher depo-
sition rate, at the tip of the bump. Thus the bump will grow
exponentially. A similar argument applies if the transport is
diffusive. At very high spatial frequencies, however, the
straight interface is stabilized by surface tension. This picture
leads to an instability of the straight electrode analogous to
the Mullins-Sekerka instability — perturbations within a
band of wave numbersk from k50 up to a cutoff wave
numberkc will grow, while perturbations withk.kc will be
damped out. The exponential growth rateb of spatial modes
with wave numberk has the form@3#

b~k!5qk~12rk2!, ~1!

with kc5r21/2.
Experimentally, Kahandaet al. @14# studied growth by

electrochemical deposition in the limit of very low currents.
In this case@14#, the deposition of metal onto the cathode is
limited by the activation of cations in the double layer. Ka-
handaet al. used a Fourier analysis technique to study the
growing aggregate front. They determined the growth rate of
the Fourier modes as a function of wave number and found
semiquantitative agreement with the predictions of MS
theory.

At higher currents, however, the deposition rate is gov-
erned by the transport of ions in the electrolyte. A number of

electrochemical processes contribute to the ion transport and
to the current distribution near the cathode, resulting in
modifications to Eq.~1! @7–9,11,13#. Barkey, Muller, and
Tobias~BMT! @11# have performed a linear stability analysis
of a planar electrode in three-dimensional ECD, and, at least
conceptually, the results of their work should carry over to
the two-dimensional case studied here. They assume mass
transport to be due solely to diffusion. Surface tension mani-
fests itself as a reduction in the binding energy of deposited
atoms on a curved surface relative to a flat surface~referred
to in BMT as the capillary potential shift!. The effects of
electrode reactions~kinetic overpotential! and of concentra-
tion gradients in the diffusion layer close to the cathode
~concentration overpotential! both act to smooth out varia-
tions in the current density, and thus reduce the growth rate
of perturbations. BMT found@see Eq.~41! of Ref. @11## the
growth rateb(k) to have the form

b5
qk~12rk2!

~11sk!
. ~2!

The coefficientsq, r , ands depend on the properties of the
electrolyte and the deposited metal, the ion concentration,
and the current@15#. Roughly speaking,q incorporates the
destabilizing effects of mass transport,qr involves the stabi-
lizing effects of surface tension, ands is a combination of
terms involving the kinetic overpotential and the concentra-
tion overpotential. As above, there is a range of unstable
wave numbers, 0,k,r21/2; the MS result is recovered in
the limit thats→0.

In this Rapid Communication, I present results from ex-
periments on the very early stages of the ECD of aggregates
of metallic copper from solutions of CuSO4, in the regime
where the growth is limited by mass transport in the electro-
lyte. Using analysis techniques similar to those of Kahanda
et al. @14#, I investigate the growth rateb(k) and find it to be
qualitatively described by the dispersion relation of BMT
@Eq. ~2!# and not by Eq.~1!.

In my experiments@16#, two copper foil electrodes 5.1 cm
long by 0.025 cm thick, separated by roughly 23 mm, were
sandwiched between two 5.1 cm square by 0.6 cm thick
glass plates and clamped together. The space between the
electrodes was filled with aqueous solutions of CuSO4 with

PHYSICAL REVIEW E JUNE 1996VOLUME 53, NUMBER 6

531063-651X/96/53~6!/5561~4!/$10.00 R5561 © 1996 The American Physical Society



concentrationsc in the range 0.02M,c,0.5M . A constant
currentI of from 0.06 mA to 10 mA was passed through the
cell, and a branched copper aggregate formed at the cathode.
The cell was illuminated from below by a diffuse white light
source, and imaged from above with a charge coupled device
~CCD! video microscope. Individual images of the aggregate
were captured and digitized by a frame grabber in a personal
computer, and the growth was also recorded on video tape.
The spatial resolution of the digitized images was typically
23 mm/pixel.

My data analysis was similar to that of Kahandaet al.
@14#. The edge of the aggregate~the interface! was located
by thresholding the digitized image. Pixels with an intensity
lower than a chosen value were deemed to be on the aggre-
gate. Since the aggregate is rough, the interface determined
in this way, p(x), will in general not be a single-valued
function of the coordinatex along the length of the cathode.
For my analysis, I formed a single-valued approximation to
the interface,p1(x), by taking the point on the interface
furthest from the original cathode position, i.e., the highest
point, at eachx value. For a very heavily branched aggregate
with many ‘‘overhangs,’’p1(x) is not a good representation
of the true interface. However, for the early times of interest
here, the aggregate, although rough, has few overhangs, and
p1(x) is very similar top(x). The single-valued interface
function p1(x) is then Fourier transformed to give a spatial
Fourier power spectrum of the interface@17#.

Figure 1 shows the interface functions determined at two
different times for a particular run. Curve~a! of Fig. 1 shows
p(x) determined from a digitized video image recorded 225
s after the start of the run. The aggregate is rough, but, at
least within the resolution of my imaging system, it does not
yet contain a large number of overhangs. Curve~b! of Fig. 1
is the single-valued functionp1(x) extracted from curve~a!;
it is very similar top(x). Curve ~c! showsp(x) at a later
time, 385 s after the start of the run. By this time the aggre-
gate is more strongly branched and displays substantially
more overhangs. Curve~d! is the corresponding single-
valued functionp1(x). In this case there are significant dif-
ferences betweenp1(x) and p(x) and Fourier analysis of

p1(x) does not provide meaningful information about the
true interface.

By Fourier analysing the single-valued interface functions
obtained from a time sequence of images, one can extract the
Fourier poweruA(k)u2 of a mode of wave numberk as a
function of time. Figure 2 showsuA(k)u2 vs time for three
different values ofk, from the run illustrated in Fig. 1. In this
particular run the growth at the cathode first became visible
about 100 s after the start of the run. The Fourier power
grows exponentially with time between this time, and about
230 s. The dotted lines in Fig. 2 are fits of the data to a
growing exponential over this time range. The growth rate
depends onk. At times beyond the region of exponential
growth, the growth rate generally decreases. In this regime,
however,p1(x) is not a good approximation to the true in-
terface and quantitative analysis is not possible using this
technique. The interface shown in curves~a! and ~b! of Fig.
1 corresponds to a time near the end of the exponential
growth phase of Fig. 2, while that of curves~c! and ~d! of

FIG. 1. The edge of the metal aggregate growing on the cathode for a run withc50.1M and I51.4225 mA.~a! The interface function
p(x) at time t5225 s, near the end of the exponential growth regime seen in Fig. 2 below.~b! The single-valued functionp1(x)
corresponding to curve~a!. ~c! p(x) at t5385 s, well beyond the end of the exponential regime.~d! The single-valued functionp1(x)
corresponding to curve~c!. The solid bars have length 1mm.

FIG. 2. The Fourier power as a function of time for three values
of wave numberk, for the same run as shown in Fig. 1. Triangles:
k527.2 mm21, circles: k575.3 mm21, diamonds: k5113
mm21. The lines are fits to the data in the exponential growth
regime.
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Fig. 1 is well beyond the end of this phase.
As can be seen from the data in Fig. 1~b!, the interface is

only of order 10 pixels high by the time the single-valued
approximation breaks down. To confirm that the resulting
‘‘digitization steps’’ in the data did not affect the results, the
data were numerically smoothed by application of a
Savitzky-Golay smoothing filter@17#, and then reanalyzed.
The results were essentially identical to those obtained from
the raw data. Furthermore, data recorded at a higher magni-
fication agreed with the data presented in the wave number
region where they overlapped.

Figure 3 shows the exponential growth rateb of the Fou-
rier amplitudeuA(k)u as a function ofk. The dotted curve is
a least-squares fit to Eq.~1!, which does not describe the data
well. Rather, the growth rate increases more rapidly for small
k, displays a weak maximum, and then decreases more
slowly for largerk. The solid curve plotted in Fig. 3 is a
least-squares fit of the data to a dispersion relation with the
form of Eq. ~2!. The fit is quite good, although, as in Fig. 3,
most data sets show perhaps a bit more of a peak in the data
than the theoretical curve would indicate. Although fits of
the experimental data to Eq.~2! looked satisfactory to the
eye, the uncertainties in the parameters were in many cases
quite large. This was due to the fairly large scatter in the
b(k) data; that in the data shown in Fig. 3 is typical.

From fits of Eq.~2! to the data from a number of runs, I
determined the growth ratebmaxof the fastest growing mode.
Figure 4~a! is a plot ofbmaxagainst the cell currentI for two
values of the concentrationc. Although the scatter in the
data is considerably larger than the error bars, the trend of
the data is well described by the power lawbmax}I

d1 with an
exponent d151.5260.19 for c50.02M and
d151.2860.06 for c50.1M . Figure 4~b! showsbmax as a
function ofc for a fixed current. In this case a power law fit
to the data givesbmax}c

2d2, with d251.4060.16. The
similarity between the values of the exponentsd1 and d2
suggests thatb maxmay be a function of the ratioI /c alone.
In Fig. 4~c! the same three data sets are plotted as a function
of I /c. With some scatter, the data collapse onto a single
power-law function given bybmax5(6.862.0)(I /c)1.3760.08

s21.

I can make a qualitative comparison of my results to the
theoretical predictions@11#. Using bulk values for the elec-
trolyte properties involved in the expressions for the coeffi-
cientsq, r , and s @15#, the theory predicts that the coeffi-
cients will depend on current and concentration asq}I , r
}c/I , and s}c/I . On the other hand, the values ofq ob-
tained from fits to the experimental data tend to increase with
I at constantc, but decrease withc at constantI ; the fitted
values ofr show no systematic variation with eitherI or c
and in fact are constant to within a factor of two over the
range of conditions studied; and the values ofs, while they
have large error bars, also show no systematic variation with
either I or c. Under the same assumptions, the theory pre-
dicts thatb max}I

2/c, while Fig. 4~c! indicates that, experi-
mentally,b max behaves as a power law inI /c.

The coefficientsq, r , and s depend on the quantity
G512 i / i L , wherei is the current density andi L the limit-
ing current density@18#. Branched growth occurs wheni is at
or neari L @19#, so this quantity is small. Takingc50.1M
andI52 mA as an example, and again using bulk values for
the electrolyte properties, the value ofq obtained from fits to
the experimental data is equal to the predicted value for
G'531024, i.e., for i50.9995i L . For the same value of
G, the fitted value ofr is roughly five orders of magnitude
smaller than the predicted value, but it is worth noting that
the quality of the fits to the data~i.e., thex2 values! is quite
insensitive to the value ofr . Finally, the fitted values ofs are
of order 100 times the predicted values.

The fact that the shape of the experimental dispersion

FIG. 3. The growth rateb(k) of the Fourier amplitudeuAu, for
the same run as the previous figures. The dotted curve is a fit to Eq.
~1!, and does not describe the data well. The solid curve is a fit to
the form predicted by BMT, Eq.~2!.

FIG. 4. ~a! The maximum growth rateb maxas a function of the
current I for fixed concentrationc. Squares:c50.02M ; triangles:
c50.10M . The lines are fits of the data to power laws inI , as
discussed in the text.~b! b max as a function ofc for I52.00 mA.
The dashed line is a fit to a power law.~c! The same data as in~a!
and ~b! plotted as a function ofI /c. The symbols are as in~a! and
~b!, and the line is a fit of all the data to a power law.
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relation can be fitted by Eq.~2! suggests that the basic ingre-
dients of the theory — that is, that the instability is driven by
mass transport, stabilized by surface tension, and modified
by electrochemical processes — are correct. However, the
quantitative differences between experiment and theory out-
lined above suggest that either the assumptions made by me
in calculating the coefficients are invalid, or that effects not
accounted for in the theory play an important role in these
experiments.

It is quite likely that the use of the bulk value of the
electrolyte conductivity in evaluating the coefficients is a
poor approximation, since in an unsupported electrolyte a
diffusion layer depleted of ions, and with a correspondingly
low conductivity, develops near the cathode. Using a con-
ductivity of zero would makeq independent ofG and give a
theoretical value roughly three orders of magnitude smaller
than the experimental value for the conditions discussed
above, whiler ands would go to zero@15#.

The theory of BMT assumes that ion transport is due to
diffusion only. In an unsupported binary electrolyte, migra-
tion will also be important. This can be accounted for by a
correction factor which would result in a decrease of the
theoretical value ofq by about 20–40 %, depending onG
@20#.

A physical effect known to be present in this system, but

not accounted for in the theory of BMT, is hydrodynamic
flow near the electrodes. High electric fields in the diffusion
layer cause electroconvective flow in quasi-two-dimensional
ECD experiments@21,22#, which has an influence on ion
transport and on the deposition process. Natural convection,
driven by density gradients in the electrolyte@23–26# may
similarly play a role. These flows may provide at least a
partial explanation for the quantitative differences between
my experimental results and the theoretical predictions.

In summary, I have measured the growth rate of spatial
modes as a function of wave number during the early stages
of the growth of metal aggregates in thin-layer electrochemi-
cal deposition. The dispersion relation is not well described
by a MS-type theory@3#, but can be fitted to the form pre-
dicted by the stability analysis of Ref.@11#. Quantitative dif-
ferences between my results and the predictions of the theory
of Ref. @11# suggest that convection in the electrolyte driven
by electric fields or by density gradients modifies the ion
transport substantially and plays an important role in deter-
mining the growth rate. A more detailed account of this work
will appear elsewhere@19#.
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